26 resultados para vein puncture

em CentAUR: Central Archive University of Reading - UK


Relevância:

10.00% 10.00%

Publicador:

Resumo:

To determine the effect of duration of dietary vitamin A restriction on site of fat deposition in growing cattle, 60 Holstein steers (BW = 218.4 ± 6.55 kg) were fed a diet based on high-moisture corn with 2,200 IU supplemental vitamin A/kg DM (C) or no supplemental vitamin A for a long (243 d; LR) or short (131 d; SR) restriction prior to harvest at 243 d. The SR steers were fed the C diet for the first 112 d. Steers were penned individually and fed for ad libitum intake. Jugular vein blood samples for serum retinol analysis were collected on d 1, 112, and 243. Carcass samples were collected for composition analysis. Subcutaneous fat samples were collected for fatty acid composition. Fat samples from the i.m. and s.c. depot were collected to measure adipocyte size and density. Feedlot performance (ADG, DMI, and G:F) was not affected (P > 0.05) by vitamin A restriction. On d 243, the i.m. fat content of the LM was 33% greater (P < 0.05) for LR than for SR and C steers (5.6 vs. 3.9 and 4.2% ether extract, respectively). Depth of back fat and KPH percentage were not affected (P = 0.44 and 0.80, respectively) by vitamin A restriction. Carcass weight, composition of edible carcass, and yield grade were similar among treatments (P > 0.10). Liver retinol (LR = 6.1, SR = 6.5, and C = 44.7 µg/g; P < 0.01) was reduced in LR and SR vs. C steers. On d 243, LR and SR steers had similar serum retinol concentrations, and these were lower (P < 0.01) than those of C steers (LR = 21.2, SR = 25.2, and C = 36.9 µg/dL). Intramuscular adipose cellularity (adipocyte/mm2 and mean adipocyte diameter) on d 112 and d 243 was not affected (P > 0.10) by vitamin A restriction. Restricting vitamin A intake for 243 d increased i.m fat percentage without affecting s.c. or visceral fat deposition, feedlot performance, or carcass weight. Restricting vitamin A intake for 131 d at the end of the finishing period appears to be insufficient to affect the site of fat deposition in Holstein steers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A more complete understanding of amino acid ( AA) metabolism by the various tissues of the body is required to improve upon current systems for predicting the use of absorbed AA. The objective of this work was to construct and parameterize a model of net removal of AA by the portal-drained viscera (PDV). Six cows were prepared with arterial, portal, and hepatic catheters and infused abomasally with 0, 200, 400, or 600 g of casein daily. Casein infusion increased milk yield quadratically and tended to increase milk protein yield quadratically. Arterial concentrations of a number of essential AA increased linearly with respect to infusion amount. When infused casein was assumed to have a true digestion coefficient of 0.95, the minimum likely true digestion coefficient for noninfused duodenal protein was found to be 0.80. Net PDV use of AA appeared to be linearly related to total supply (arterial plus absorption), and extraction percentages ranged from 0.5 to 7.25% for essential AA. Prediction errors for portal vein AA concentrations ranged from 4 to 9% of the observed mean concentrations. Removal of AA by PDV represented approximately 33% of total postabsorptive catabolic use, including use during absorption but excluding use for milk protein synthesis, and was apparently adequate to support endogenous N losses in feces of 18.4 g/d. As 69% of this use was from arterial blood, increased PDV catabolism of AA in part represents increased absorption of AA in excess of amounts required by other body tissues. Based on the present model, increased anabolic use of AA in the mammary and other tissues would reduce the catabolic use of AA by the PDV.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective of this work was to construct a dynamic model of hepatic amino acid metabolism in the lactating dairy cow that could be parameterized using net flow data from in vivo experiments. The model considers 22 amino acids, ammonia, urea, and 13 energetic metabolites, and was parameterized using a steady-state balance model and two in vivo, net flow experiments conducted with mid-lactation dairy cows. Extracellular flows were derived directly from the observed data. An optimization routine was used to derive nine intracellular flows. The resulting dynamic model was found to be stable across a range of inputs suggesting that it can be perturbed and applied to other physiological states. Although nitrogen was generally in balance, leucine was in slight deficit compared to predicted needs for export protein synthesis, suggesting that an alternative source of leucine (e.g. peptides) was utilized. Simulations of varying glucagon concentrations indicated that an additional 5 mol/d of glucose could be synthesized at the reference substrate concentrations and blood flows. The increased glucose production was supported by increased removal from blood of lactate, glutamate, aspartate, alanine, asparagine, and glutamine. As glucose Output increased, ketone body and acetate release increased while CO2 release declined. The pattern of amino acids appearing in hepatic vein blood was affected by changes in amino acid concentration in portal vein blood, portal blood flow rate and glucagon concentration, with methionine and phenylalanine being the most affected of essential amino acids. Experimental evidence is insufficient to determine whether essential amino acids are affected by varying gluconeogenic demands. (C) 2004 Published by Elsevier Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Effects of increased ammonia and/or arginine absorption across the portal-drained viscera (PDV) on net splanchnic (PDV and liver) metabolism of nitrogenous compounds and urinary N excretion were investigated in six cathetenzed Hereford x Angus steers (501 +/- 1 kg BW) fed a 75% alfalfa:25% (as-fed basis) corn-soybean meal diet (0.523 MJ of ME/[kg BW0.15.d]) every 2 h without (27.0 g of N/kg of dietary DM) and with 20 g of urea/kg of dietary DM (35.7 g of N/kg of dietary DM) in a split-plot design. Net splanchnic flux measurements were obtained immediately before beginning and ending a 72-h mesenteric vein infusion of L-arginine (15 mmol/h). For 3 d before and during arginine infusion, daily urine voided was measured and analyzed for N composition. Feeding urea increased PDV absorption (P < 0.01) and hepatic removal (P < 0.01) of ammonia N, accounting for 80% of increased hepatic urea N output (P < 0.01). Numerical increases in net hepatic removal of AA N could account for the remaining portion of increased hepatic urea N output. Arginine infusion increased hepatic arginine removal (P < 0.01) and hepatic urea N output (P < 0.03) and switched hepatic ornithine flux from net uptake to net output (P < 0.01), but numerical changes in net hepatic removal of ammonia and AA N could not account fully for the increase in hepatic urea N output. Increases in urine N excretion equaled quantities of N fed as urea or infused as arginine. Estimated salivary urea N excretion was not changed by either treatment. Urea cycle regulation occurs via a complex interaction of mechanisms and requires N sources other than ammonia, but the effect of increased ammonia absorption on hepatic catabolism of individual AA in the present study was not significant.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Effects of increased ammonia and/or arginine absorption on net splanchnic (portal-drained viscera [PDV] plus liver) metabolism of nonnitrogenous nutrients and hormones in cattle were examined. Six Hereford x Angus steers (501 +/- 1 kg BW) prepared with vascular catheters for measurements of net flux across the splanchnic bed were fed a 75% alfalfa:25% (as-fed basis) corn and soybean meal diet (0.523 MJ of ME/[kg BW(0.75.)d]) every 2 h without (27.0 g of N/kg of DM) and. with 20 g of urea/kg of DM (35.7 g of N/kg of DM) in a split-plot design. Net flux measurements were made immediately before and after a 72-h mesenteric vein infusion Of L-arginine (15 mmol/h). There were no treatment effects on PDV or hepatic 02 consumption. Dietary urea had no effect on splanchnic metabolism of glucose or L-lactate, but arginine infusion decreased net hepatic removal Of L-lactate when urea was fed (P < 0.01). Net PDV appearance of n-butyrate was increased by arginine infusion (P < 0.07), and both dietary urea (P < 0.09) and arginine infusion (P < 0.05) increased net hepatic removal of n-butyrate. Dietary urea also increased total splanchnic acetate output (P < 0.06), tended to increase arterial glucagon concentration (P < 0.11), and decreased arterial ST concentration (P < 0.03). Arginine infusion increased arterial concentration (P < 0.07) and net PDV release (P < 0.10) and tended to increase hepatic removal (P < 0.11) of insulin, as well as arterial concentration (P < 0.01) and total splanchnic output (P < 0.01) of glucagon. Despite changes in splanchnic N metabolism, increased ammonia and arginine absorption had little measurable effect on splanchnic metabolism of glucose and other nonnitrogenous components of splanchnic energy metabolism.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Our objective was to determine the effect of feeding rumen-inert fats differing in their degree of saturation on dry matter intake (DMI), milk production, and plasma concentrations of insulin, glucagon-like peptide 1 (7-36) amide (GLP-1), glucose-dependent insulinotropic polypeptide (GIP), and cholecystokinin (CCK) in lactating dairy cows. Four midlactation, primiparous Holstein cows were used in a 4 x 4 Latin square experiment with 2-wk periods. Cows were fed a control mixed ration ad libitum, and treatments were the dietary addition (3.5% of ration dry matter) of 3 rumen-inert fats as sources of mostly saturated fatty acids (SFA), monounsaturated fatty acids (MUFA), or polyunsaturated fatty acids (PUFA). Daily DMI, milk yield, and composition were measured on the last 4 d of each period. Jugular vein blood was collected every 30 min over a 7-h period on d 12 and 14 of each period for analysis of plasma concentrations of hormones, glucose, and nonesterified fatty acids. Feeding fat decreased DMI, and the decrease tended to be greater for MUFA and PUFA compared with SFA. Plasma concentration of GLP-1 increased when fat was fed and was greater for MUFA and PUFA. Feeding fat increased plasma glucose-dependent insulinotropic polypeptide and CCK concentrations and decreased plasma insulin concentration. Plasma CCK concentration was greater for MUFA and PUFA than for SFA and was greater for MUFA than PUFA. Decreases in DMI in cows fed fat were associated with increased plasma concentrations of GLP-1 and CCK and a decreased insulin concentration. The role of these peptides in regulating DMI in cattle fed fat requires further investigation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Effects of transition from late gestation to early lactation on plasma concentrations of glucose-dependent insulinotropic polypeptide (GIP), glucagon-like peptide 1-(7-36) amide (GLP-1), and cholecystokinin (CCK) have not been reported in cattle. The objective of the present study was to measure plasma concentrations of GLP-1, GIP, CCK, insulin, glucose, and nonesterified fatty acids in blood plasma obtained from the coccygeal vein of 32 Holstein cows at an average of 11 d before, and 5, 12, and 19 d after calving. Feed dry matter intake (DMI) averaged 14.4, 17.7, and 19.9 kg/d on d 5, 12, and 19 of lactation, respectively, as milk yield increased (30.6, 36.6, and 39.7 kg/d, respectively). Plasma concentrations of insulin and glucose were lower postpartum than prepartum, but did not differ among samples collected after calving. In contrast, plasma concentration of gut peptides increased linearly after calving, perhaps as a consequence of increased feed intake and nutrient absorption; however, the increases in plasma concentrations of GIP and GLP-1 as lactation progressed were not associated with increased DMI per se, and likely reflect the endocrine and metabolic adaptations of lactogenesis. In contrast, increased concentration of CCK was related both to increasing days in milk and DMI. By 19 d postpartum, concentrations of GLP-1, GIP, and CCK increased by 2.3-, 1.8-, and 2.8-fold, respectively, compared with values at 11 d before calving. Although these peptides have direct and indirect effects that reduce appetite and DMI in other species (including increased insulin secretion), these may be glucose- or insulin-dependent functions, and insulin and glucose concentrations were reduced in early lactation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effects of specific nutrients on secretion and plasma concentrations of gut peptides (glucagon-like peptide-1((7-36)) amide (GLP-1), glucose-dependent insulinotropic polypeptide (GIP), and cholecystokinin-8 (CCK)) differ across species, but are not reported for cattle. Our objective was to determine acute (hours) and chronic (1 week) effects of increased abomasal supply of protein, carbohydrate, or fat to the small intestine on dry matter intake (DMI) and plasma concentrations of GLP-1, GIP, CCK, and insulin. Four mid-lactation Holstein cows were used in a 4 x 4 Latin square design experiment. Treatments were 7-day abomasal infusions of water, soybean oil (500 g/d), corn starch (1100 g/d), or casein (800 g/d). Jugular vein plasma was obtained over 7 h at the end of the first and last day of infusions. Oil infusion decreased DMI on day 7, but total metabolizable energy (ME) supply (diet plus infusate) did not differ from water infusion. Casein and starch infusion had no effect on feed DMI; thus, ME supply increased. Decreased DMI on day 7 of oil infusion was accompanied by increased plasma GLP-1 concentration, but decreased plasma CCK concentration. Increased plasma GIP concentration was associated with increased ME supply on day 7 of casein and starch infusion. Casein infusion tended to increase plasma CCK concentration on both days of sampling, and increased plasma GLP-1 and insulin concentration on day 1 of infusion. The present data indicate a sustained elevation of plasma concentration of GLP-1, but not CCK, may contribute to the reduced DMI observed in dairy cows provided supplemental fat. (C) 2008 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The increase in fractional rate of protein synthesis (K-s) in the skeletal muscle of growing rats during the transition from fasted to fed state has been explained by the synergistic action of a rise in plasma insulin and branched-chain amino acids (BCAA). Since growing lambs Also exhibit an increase in K-s with level of feed intake, the objective of the present study was to determine if this synergistic relationship between insulin and BCAA also occurs in ruminant animals. Six 30 kg fasted (72 h) lambs (8 months of age) received each of four treatments, which were based on continuous infusion into the jugular vein for 6 h of: (1) saline (155 mmol NaCl/l); (2) a mixture of BCAA (0.778 mumol leucine, 0.640 mumol isoleucine and 0.693 mumol valine/min.kg); (3) 18.7 mumol glucose/min.kg (to induce endogenous insulin secretion): (4) co-infusion of BCAA and glucose. Within each period all animals received the same isotope of phenylalanine, (Phe) as follows: (1) L-[1-C-13]Phe; (2) L-phenyl-[ring H-2(5)]-alanine; (3) L-[N-15]Phe; (4) L-[ring 2,6-H-3]Phe. Blood was sampled serially during infusions to measure plasma concentrations of insulin, glucose and amino acids, and plasma free Phe isotopic activity; biopsies were taken 6 h after the beginning of infusions to determine K-s in in. longissimus dorsi and vastus muscle. Compared with control (saline-infused) lambs, K-s was increased by an average of 40% at the end of glucose infusion, but this effect was not statistically significant in either of the muscles sampled. BCAA infusion, alone or in combination with glucose, also had no significant effect on K-s compared with control sheep. K-s was approximately 60% greater for vastus muscle than for m. longissimus dorsi (P<0.01), regardless of treatment. It is concluded that there are signals other than insulin and BCAA that are responsible for the feed-induced increase in K-s in muscle of growing ruminant animals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There has been much recent interest in the cardiovascular benefits of dietary isoflavones. The aim of the present in vitro studies was to investigate potential anti-thrombogenic and anti-atherogenic effects of the isoflavones genistein and daidzein in platelets, macrophages and endothelial cells. Pre-treatment with either isoflavone inhibited collagen-induced platelet aggregation in a dose-dependent manner. In a macrophage cell line (RAW 264-7) activated with interferon gamma plus lipopolysaccharide, both isoflavones were found to inhibit NO production and tumour necrosis factor alpha (TNF-alpha) secretion dose-dependently, but they did not affect mRNA levels for inducible nitric oxide synthase and cyclo-oxygenase-2. Both isoflavones also dose-dependently decreased monocyte chemoattractant protein-1 secretion induced by TNF-alpha in human umbilical vein endothelial cells. Compared with daidzein, genistein exerted greater inhibitory effects for all parameters studied. The present data contributes to our knowledge on the molecular mechanisms by which isoflavones may protect against coronary artery disease. Further studies are required to determine whether the effects of isoflavones observed in the current in vitro studies are relevant to the aetiology of coronary artery disease in vivo.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Endothelial dysfunction may be related to adverse effects of some dietary fatty acids (FAs). Although in vitro studies have failed to show consistent findings, this may reflect the diverse experimental protocols employed and the limited range of FAs and end points studied. Aims: To investigate the effect of dietary FA type (saturated, monounsaturated, n-6 and n-3 polyunsaturated fatty acids), concentration, incubation time and cell stimulation state, on a broad spectrum of endothelial inflammatory gene expression. Methods: Using human umbilical vein endothelial cells, with and without stimulation (+/- 10 ng/ml TNF alpha), the effects of arachidonic (AA), docosahexaenoic (DHA), eicosapentaenoic (EPA), linoleic (LA), oleic (OA) and palmitic acids (PA) (10, 25 and 100 mu M), on the expression of genes encoding a number of inflammatory proteins and transcription factors were assessed by quantitative real time RT-PCR. Results: Individual FAs differentially affect endothelial inflammatory gene expression in a gene-specific manner. EPA, LA and OA significantly up-regulated MCP-1 gene expression compared to AA (p = 0.001, 0.013, 0.008, respectively) and DHA (p < 0.0005, = 0.004, 0.002, respectively). Furthermore, cell stimulation state and FA incubation time significantly influenced reported FA effects on gene expression. Conclusions: The comparative effects of saturated, monounsaturated, n-6 and n-3 polyunsaturated FAs on endothelial gene expression depend on the specific FA investigated, its length of incubation, cell stimulation state and the gene investigated. These findings may explain existing disparity in the literature. This work was funded by the EC, Framework Programme 6 via the LIPGENE project (FOOD-CT-2003-505944).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There has been much recent interest in the cardiovascular benefits of dietary isoflavones. The aim of the present in vitro studies was to investigate potential anti-thrombogenic and anti-atherogenic effects of the isoflavones genistein and daidzein in platelets, macrophages and endothelial cells. Pre-treatment with either isoflavone inhibited collagen-induced platelet aggregation in a dose-dependent manner. In a macrophage cell line (RAW 264-7) activated with interferon gamma plus lipopolysaccharide, both isoflavones were found to inhibit NO production and tumour necrosis factor alpha (TNF-alpha) secretion dose-dependently, but they did not affect mRNA levels for inducible nitric oxide synthase and cyclo-oxygenase-2. Both isoflavones also dose-dependently decreased monocyte chemoattractant protein-1 secretion induced by TNF-alpha in human umbilical vein endothelial cells. Compared with daidzein, genistein exerted greater inhibitory effects for all parameters studied. The present data contributes to our knowledge on the molecular mechanisms by which isoflavones may protect against coronary artery disease. Further studies are required to determine whether the effects of isoflavones observed in the current in vitro studies are relevant to the aetiology of coronary artery disease in vivo.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background Epidemiological studies suggest that soy consumption contributes to the prevention of coronary heart disease. The proposed anti-atherogenic effects of soy appear to be carried by the soy isoflavones with genistein as the most abundant compound. Aim of the study To identify proteins or pathways by which genistein might exert its protective activities on atherosclerosis, we analyzed the proteomic response of primary human umbilical vein endothelial cells ( HUVEC) that were exposed to the pro-atherosclerotic stressors homocysteine or oxidized low-density lipoprotein (ox-LDL). Methods HUVEC were incubated with physiological concentrations of homocysteine or ox-LDL in the absence and presence of genistein at concentrations that can be reached in human plasma by a diet rich in soy products (2.5 muM) or by pharmacological intervention ( 25 muM). Proteins from HUVEC were separated by two-dimensional polyacrylamide gel electrophoresis and those that showed altered expression level upon genistein treatment were identified by peptide mass fingerprints derived from tryptic digests of the protein spots. Results Several proteins were found to be differentially affected by genistein. The most interesting proteins that were potently decreased by homocysteine treatment were annexin V and lamin A. Annexin V is an antithrombotic molecule and mutations in nuclear lamin A have been found to result in perturbations of plasma lipids associated with hypertension. Genistein at low and high concentrations reversed the stressor-induced decrease of these anti-atherogenic proteins. Ox-LDL treatment of HUVEC resulted in an increase in ubiquitin conjugating enzyme 12, a protein involved in foam cell formation. Treatment with genistein at both doses reversed this effect. Conclusions Proteome analysis allows the identification of potential interactions of dietary components in the molecular process of atherosclerosis and consequently provides a powerful tool to define biomarkers of response.